Convergence of the Schulz-Snyder phase retrieval algorithm to local minima.

نویسندگان

  • Kerkil Choi
  • Aaron D Lanterman
  • Raviv Raich
چکیده

The Schulz-Snyder iterative algorithm for phase retrieval attempts to recover a nonnegative function from its autocorrelation by minimizing the I-divergence between a measured autocorrelation and the autocorrelation of the estimated image. We illustrate that the Schulz-Snyder algorithm can become trapped in a local minimum of the I-divergence surface. To show that the estimates found are indeed local minima, sufficient conditions involving the gradient and the Hessian matrix of the I-divergence are given. Then we build a brief proof showing how an estimate that satisfies these conditions is a local minimum. The conditions are used to perform numerical tests determining local minimality of estimates. Along with the tests, related numerical issues are examined, and some interesting phenomena are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualizing and Improving the Robustness of Phase Retrieval Algorithms

Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup’s HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the global...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Fourier Phase Retrieval with a Single Mask by Douglas-Rachford Algorithm

Douglas-Rachford (DR) algorithm is analyzed for Fourier phase retrieval with a single random phase mask. Local, geometric convergence to a unique fixed point is proved with numerical demonstration of global convergence.

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

IIR System Identification Using Improved Harmony Search Algorithm with Chaos

Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 23 8  شماره 

صفحات  -

تاریخ انتشار 2006